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Abstract

LiDAR localization plays a crucial role in enabling au-
tonomous vehicles and robotics. Absolute pose regression,
which directly estimates the mapping from a scene to a 6-
DoF pose, has shown impressive results in learning-based lo-
calization.However, existing regression networks often face
challenges in dealing with scene ambiguities, particularly in
complex traffic environments, resulting in significant errors
and limited practical applications. To overcome these limi-
tations, we propose a novel LiDAR localization framework,
which incorporates spatio-temporal constraints.The integra-
tion of spatio-temporal constraints enables the network to
capture more context and dependencies between consecu-
tive frames, leading to improved localization performance.
We modified STLoc, replaced the feature extraction layer
of STCLoc with RandLA-Net, and fine-tuned other parts of
the model to improve the positioning accuracy of the model.
Our source codes have released on https://github.com/the-
full/RandLALoc

Introduction
LiDAR-based localization, is the problem of estimating the
position and orientation from the LiDAR point cloud. In
3D computer vision, many applications such as autonomous
driving (Lu et al. 2019), augmented reality (Dai et al. 2022)
and robot navigation (Zou et al. 2022) are working in a
highly dynamic environment.In general, LiDAR localization
aims to estimate the 6-degrees-of-Freedom(6-DoF) pose of
the system from point cloud data without the need of any
external sensors like GPS.
A common solution is map-based localization (Yin et al.
2020), (Yu et al. 2021) divide the problem into two step,
mapping and point cloud alignment. However, the cost of
data collection and storage is huge. Recently, Absolute Pose
Regression (APR) (Kendall, Grimes, and Cipolla 2015),
(Kendall and Cipolla 2017), (Radwan, Valada, and Burgard
2018), (Xue et al. 2019), (Wang et al. 2020), (Shavit, Ferens,
and Keller 2021) has convolutional neural networks to di-
rectly estimate 6-DoF pose from scene data in an end-to-end
manner. Since it is generally believed that scene informa-
tion is encoded and memorized into the regression network
to form an implicit map representation (Kendall, Grimes,
and Cipolla 2015), (Brahmbhatt et al. 2018) pre-built 3D
maps are not required in the inference process. Thus it has a

Figure 1: LiDAR localization in outdoor (left) and indoor
(right) scenes from Oxford Radar RobotCar (Barnes et al.
2020a) and vReLoc (Wang et al. 2022) datasets.(this figure

borrow from STCLoc(Yu et al. 2022))

great value in the edge computing equipment. Although the
absolute pose estimation method has such good properties,
there still has some shortcomings that limit its wider appli-
cation. In some challenging scenarios, as shown in Figure
1, there is a significant gap between the predicted results of
the model and the real results, and presented in the form of
outliers. In order to solve outliers, we usually introduce con-
straints as regular terms to constrain the prediction results
keep smoothness. A lot of work has proposed various con-
straints to regularize the output of the model. It can simply
divide these constraints into two parts: spatial and temporal.
For spatial constraints, pixel-level semantic information ag-
gregation (Tian et al. 2021) is introduced to regularize the
absolute pose regression, which generate more distinguish-
able features for complex scenes. For temporal constraints,
consecutive frames provide a wider field of views, result-
ing in more stable results, early attempts employ a recurrent
model (Clark et al. 2017) or combine it with relative pose
regression (Brahmbhatt et al. 2018) to leverage sequential
smoothness.

Related Work
Map-Based Localization
LiDAR Localization aims to determine the precise 6-DoF
pose of a given query point cloud. Conventional map-based
methods focus on establishing correspondences between the
query point cloud and a pre-constructed 3D map. On the
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Figure 2: The proposed local feature aggregation module

other hand, retrieval-based localization identifies the most
similar point cloud within a database, often resulting in fast
inference times.However, these methods are typically lim-
ited to providing coarse location estimates in relation to the
database.
In contrast, registration-based localization involves a fine-
grained matching process between the query point cloud and
the database map.USIP (Li and Lee 2019) has made im-
provements in feature matching by estimating keypoint po-
sitions. However, these methods require matching with the
entire database during the first localization or relocalization.

Relative Pose Regression
Relative pose regression is a technique employed for local-
ization, which involves estimating the relative motion (trans-
lation and rotation) between consecutive LiDAR frames.
One approach in this field is LO-Net (Li et al. 2019), which
introduces a novel mask-weighted loss to effectively reject
dynamic objects, enhancing the accuracy of the relative pose
estimation.PWCLONet (Wang et al. 2021) introduces hier-
archical embedding mask optimization for LiDAR odome-
try, improving the robustness of the localization process.
However, it’s important to note that relative pose regression
often requires an accurate initial pose for subsequent local-
ization, making it less suitable for global localization tasks.

Absolute Pose Regression
Recent studies have proposed a shift towards localization us-
ing deep neural networks for regressing 6-DoF poses, elim-
inating the need for a pre-built 3D map during inference.
PointLoc (Wang et al. 2022) introduced a LiDAR-based
learning framework for absolute pose regression, offering
more robust localization due to the reliable structural in-
formation. STCLoc (Yu et al. 2022) introduced joint spa-
tial and temporal constraints to reduce outliers for absolute
pose regression. Extensive experiments further demonstrate
the effectiveness of the proposed method in both outdoor
and indoor datasets, which shows significant performance
improvement over prior works.

Method
Inputing a large set of point clouds, first need to use neu-
ral networks for effective underground sampling and be able
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Figure 3: Full pipeline of RandLALoc

to do so without losing useful point features.Random sam-
pling is computationally efficient because it is independent
of the total number of input points and does not require ad-
ditional memory for computation. Therefore, for large-scale
point clouds, random sampling can simply and quickly real-
ize downsampling, thereby reducing point cloud density.

Local Feature Aggregation
Random sampling of a point cloud can result in the removal
of many useful point features. Therefore, we propose a pow-
erful local feature aggregation module to preserve the out-
standing features of the point cloud, allowing the entire net-
work to achieve an excellent trade-off between efficiency
and effectiveness.
As shown in the figure 2, our local feature aggregation mod-
ule is applied in parallel to each 3D point and consists of
three neural units: 1.local spatial coding (LocSE), 2.atten-
tion pooling, and 3.expanded residual blocks.
A. Local Spatial Encoding: Given a point cloud P and
the characteristics of each point, the LocSE unit explicitly
embeds all adjacent points in the x-y-z coordinates, observ-
ing local geometric patterns, thereby enabling the network
to learn the complex point cloud local structure. The LocSE
unit consists of the following steps:
1) Find adjacent points: For the ith point, its neighbors are
collected by the nearest neighbor (KNN) algorithm LocSE
unit to improve efficiency. 2) Relative point position coding:
For the K points nearest the central point pi, we explicitly
encode the relative point position as follows:

rki = MLP
(
pi ⊕ pki ⊕ (pi − pki )⊕ ||pi − pki ||

)
(1)

Where pi and pki are the coordinate information of points, ⊕
is the join operation, ∥ · ∥ calculates the Euclidean distance



between adjacent points and the center point. Relative point
position coding can help the network learn effective local
features. 3) Point feature enhancement: For each adjacent
point pki , the encoded relative point position rki is connected
with its corresponding point feature fk

i , resulting in the aug-
mented feature vector fk

i .
Finally, the output of the LocSE unit is a new set of adjacent
features F̂i = {f̂1i · · · f̂ki · · · f̂Ki },that explicitly encodes the
local geometry of the central point pi.
B. Attentive Pooling: The network is used to aggregate
the feature set F̂i of adjacent points. Inspired by the atten-
tion mechanism, the attention pool unit is designed as fol-
lows:Calculate the attention score. Given the local feature
set F̂i = {f̂1i · · · f̂ki · · · f̂Ki }, learn the unique attention score
for each feature using the shared function g(), which consists
of shared MLP and sof tmax. The formula is as follows:

ski = g(f̂ki ,W ) (2)
Where W is the learnable weight that shares the MLP.The
learned attention scores are weighted for the above local fea-
tures. The features are weighted as follows:

f̃i =

K∑
k=1

(f̂ki · ski ) (3)

C. Dilated Residual Block: Inspired by ResNet (He et al.
2016) and extended network (Engelmann, Kontogianni, and
Leibe 2019), multiple LocSE and Attentive Pooling units are
stacked with jump connections as extended residual blocks.
In RandLALoc, we stack three sets of LocSE and Attentive
Pooling into standard residual blocks to achieve a balance of
efficiency and effectiveness.
All in all, given the input point cloud P, for the ith point pi,
LocSE and Attentive Pooling unit learn and aggregate ge-
ometric patterns and features of its K-neighbor points, and
generate an informative feature vector fi. Then the corre-
sponding extended residual connection is made to the ob-
tained feature vectors, and the receptive field of each point
is increased, while the geometric details of the point cloud
are preserved.

Spatial Regularized Multi-Task Learning (SRML)
By applying the spatial constraints mentioned in stcloc, atti-
tude classification headers are added to the absolute attitude
regression network to reduce outliers.
Attitude classification is performed by subdividing the map
into multiple geographic regions (locations) and point cloud
directions into multiple angular regions (directions). For lo-
cation classification, the map is evenly divided into blocks
of the same size. For orientation classification, directions
are distributed equally on the vertical axis. Each point cloud
is then given its position label and direction label based on
its position coordinates and Euler Angle. To take full ad-
vantage of category labels, we recommend regression using
converged cross-layer features. The features of the regres-
sion flow are combined with the features from the classifi-
cation flow by element multiplication. The formula W for
cross-layer fusion is as follows:

W = fpos · gori · hpose (4)

Among them, fpos, gori and hpose are the features of posi-
tion classification flow, direction classification flow and pos-
tural regression flow. Both fpos and gori are normalized.
The proposed position and direction classifications regular-
ize position and direction regression, respectively, and act as
constraints to force features toward a smaller and reasonable
search space. The proposed multi-task learning can integrate
the relationship between tasks. Performance improvements
in classification will lead to improvements in regression and
vice versa. Cross-layer features capture rich positioning in-
formation and provide a more discriminating representation
for regression.

Temporal Attention-Based Feature Aggregation
(TAFA)
Due to the lack of constraints on scene context informa-
tion, absolute pose regression using single frame data usu-
ally results in many outliers. Using time constraints in se-
quential data is an effective method to reduce outliers. In
order to learn feature correlations from sequences to reduce
the fuzziness of single-frame laser scanning, a time-attention
based feature aggregation (TAFA) module is proposed.
The TAFA module captures the correlation using Euclidean
distance and cosine distance, as shown in equations 5 and 6.
Note that the position code (Dosovitskiy et al. 2020) is added
to the input feature to obtain the position information of the
sequence. In the former form, we calculate the Euclidean
distance for each corresponding feature to obtain similarity,
as shown in equation 5.

ωi = 1/(1 + Euclidean(Xt, Xi)) (5)

Where wi is the similarity weight. Xt and Xi represent two
adjacent or close frames. t and i are the number of frames, i =
m or i = n. Then, the cosine similarity of each corresponding
feature is calculated to obtain another similarity. As shown
in Formula 6

θi = 0.5 + 0.5 · Cosine(Xt, Xi) (6)

Where θi is the similarity weight. Both wi and θi are nor-
malized. Finally, the module combines two similarity mech-
anisms to perform feature aggregation. The aggregation fea-
ture Ot is represented as shown in 7:

Ot = Xt +

n∑
i=m,i̸=t

(ωi + θi) ·Xi (7)

The module fuses the current view into the accumulated ob-
servations and aggregates time series information to improve
features using adjacent views, enabling the use of scene con-
text information to expand the view.

Loss Function
The output of RandLALoc includes the predicted absolute
attitude and attitude categories. Therefore, the design of the
total loss function should consider both aspects, as shown in
formula 8

L = lpose + lcls (8)
lpose and lcls are loss functions for absolute pose regression
and pose classification.



Table 1: Results on the Oxford

Methods PoseLSTM MapNet AD-MapNet AtLoc+ MS-Transformer STCLoc RandLALoc

Full7 74.00m,9.85° 61.01m,5.85° 39.18m,3.95° 34.03m,4.01° 65.38m,9.01° 6.93m,1.48° 21.72m,4.48°
Full8 128.25m,18.59° 75.35m,9.67° 66.21m,9.42° 71.51m,9.91° 88.63m,19.80° 7.44m,1.24° 20.63m,4.28°
Full9 19.12m,3.05° 44.34m,4.54° 15.10m,1.82° 10.53m,1.97° 7.62m,2.53° 6.13m,1.15° 17.68m,3.77°

Average 61.93m,9.51° 57.23m,6.53° 34.73m,4.62° 33.50m,5.16° 43.33m,9.25° 7.05m, 1.29 20.01m, 4.17°

Figure 4: Trajectories of RandLALoc

Expriments
Datasets and Baselines
1). We conducted experiments on the Oxford Radar Robot-
Car(Barnes et al. 2020b) benchmark dataset. The Oxford
Radar Robotic car is recorded by multiple on-board sen-
sors in different weather, traffic and lighting conditions. The
dataset provides 32 crossings of the Oxford Central Route
(nearly 10km each).
2). The proposed network is implemented in PyTorch using
the Adam optimizer with an initial learning rate of 0.001. We
trained the network with two NVIDIA RTX 3090 GPUs.The
point cloud is randomly downsampled to 4096 points before
being fed to the network. The number of classes for the po-
sition and orientation categories is set to Oxford to 100 and
10. The hyperparameters α are set to 1.5, β to 15, and γ and
σ to 1.
3). We’re validating our proposed model’s performance
by benchmarking it against the latest absolute pose regres-
sion methods. STCLoc(Yu et al. 2022)is a LiDAR local-
ization framework with spatio-temporal constraints. PoseL-
STM (Walch et al. 2017) and MS-Transformer (Shavit,
Ferens, and Keller 2021) leverage single images for pose
estimation, while MapNet (Brahmbhatt et al. 2018), AD-
MapNet (Huang et al. 2019), and AtLoc+ (Wang et al. 2020)
utilize sequences of images for regression. All evaluations
are conducted within the same environment, either using the
provided source codes.

Result
We tested our method (RandLALoc) on the Oxford dataset.
Considering its comprehensive collection across various
challenging scenarios, this dataset demands localization
methods with exceptional robustness. Our detailed compar-
ison between RandLALoc and other methods is described

in table1. Our analysis focuses on the mean position error
and mean orientation error across the complete set of 4
trajectories. Notably, RandLALoc demonstrates an average
error of 20.01m/4.17°, notably superior to other methods
except STCLoc. It improves the image-based localization
method(MS-Transformer) by 53.81% on position and
54.91% on orientation.Furthermore, RandLALoc achieves
an average accuracy of 95.91% and 95.76% in position
and orientation classification, respectively. The sensitiv-
ity of image-based methods to lighting fluctuations and
shadow variations significantly impacts their performance,
particularly evident in the notable decline on the Full7 and
Full8 datasets. This also indicates our method’s capability
to effectively reduce scene ambiguities in large-scale
outdoor environments. Consequently, we can achieve robust
localization in outdoor settings. However, compared to
STCLoc, Our method falls short due to our lack of sufficient
computational power to train and fine-tune our model.

Conclusion
In this paper, we present RandLALoc, a novel approach
tailored for LiDAR-based localization.We enhanced the
formidable APR framework, STCLoc, by improving its fea-
ture extractor. Our approach integrates a classification task
that categorizes the point cloud based on position and ori-
entation. We leveraging attention-based feature aggregation
to capture correlations within LiDAR sequences, facilitating
the learning of discriminative features that mitigate scene
ambiguities. Extensive experiments substantiate the effec-
tiveness of our method across diverse outdoor and indoor
datasets, demonstrating a significant performance boost over
prior methodologies.
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